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A Rigorous Analysis of a Shielded
Microstrip Asymmetric Step Discontinuity

C. N. Capsalis, N. K. Uzunoglu,
C. P. Chronopoulos, and Y. D. Sigourou

Abstract—In this paper microstrip asymmetric step discontinuities are
analyzed using a mode-matching technique leading to the frequency-
dependent characteristics of the structure. On both sides of the discon-
tinuity the fields are expanded in terms of the normal even and odd
hybrid modes of shielded microstrip lines, taking into account not only
the propagating modes but also higher order even and odd modes, which
are evanescent-type waves. The propagation constants of the even and odd
hybrid modes are computed using a previously developed method. Then
a mode-matching technique is applied in order to obtain the reflection
and transmission coefficients of the discontinuity. Numerical results are
also given for several asymmetric step discontinuities.

I. INTRODUCTION

Modelling of discontinuities in microstrip lines is highly important
in analyzing the behavior of microwave and millimeter wave circuits.

A commonly encountered discontinuity structure in microstrip lines
is the asymmetric abrupt change in strip line width, which can be
employed in low pass filters, quarter-wavelength transformers and
generally in a wide range of microwave circuits. In that sense it is very
important to develop analytical techniques to treat this discontinuity
problem, especially in high frequencies (above 10 GHz) where the
lumped C' and L description becomes less and less valid.

Microstrip discontinuity problems have been treated in the past by
several authors [1]-[8]. Several comprehensive reviews on this matter
are also presented in books [9]-[12]. The unshielded asymmetric
microstrip step discontinuity is studied in [2], where a magnetic-
wall model is employed. However, a full-wave analysis might be
required in order to describe efficiently the discontinuity behavior at
very high frequencies.

In this paper the concepts of the mode-matching techniques are
employed in order to formulate a full-wave analysis of the boundary
condition problem associated with the asymmetric microstrip step
discontinuity. The fields on both sides of the discontinuity interface
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are expanded in terms of both even and odd hybrid modes. The
characteristics of these modes are determined by using an analysis
similar to [13] by Mittra and Itoh, which determined the dispersion
characteristics of microstrip lines.

Then an efficient mode-matching procedure is developed by using
products involving the orthogonal functions of both microstrip lines.

The technique used in this paper is similar to that developed
previously by the authors [14] but now odd symmetry modes are
taken into account in order to treat the asymmetric step microstrip
discontinuities.

In the following analysis the time dependence of field quantities is
assumed to be exp(jwt) and is suppressed throughout the analysis.

II. MODE CHARACTERISTICS OF THE MICROSTRIP

The geometry of the discontinuity problem under discussion is
shown in Fig. 1. The step discontinuity is located at the z = 0
plane. The shielding box height and width are denoted by A and 2L,
respectively. Also the substrate dielectric constant and thickness are
denoted by €, and d respectively

The conductive strip widths in the z < 0 and z > 0 regions
are shown as 2¢, and 2t respectively, while ¢ denotes the axial
displacement of the two microstrip lines on the = = 0 interface plane.
Of course, the displacement of the two shielding boxes leads to an
artificial geometry. However, it does not really affect the microstrip
discontinuity itself, taking into account that this displacement is
negligible compared to the shielding boxes’ dimensions. Furthermore,
a geometry where the shielding box is sufficiently wider than the
microstrip is almost equivalent to the open microstrip asymmetric
step discontinuity.

Because of the partial dielectric filling of the shielding box, only
hybrid modes can be guided. The basic approach employed in the
present analysis is the analytical technique developed by Mittra
and Itoh [13] to determine the properties of both propagating and
higher order evanescent modes. In [13] only even hybrid modes have
been taken into account, while the asymmetric nature of the step
discontinuity under study involves the properties of both odd and
even modes. In the present analysis, the same notation as in [13],
[14] is adopted.

In the odd mode case, the TM and TE field components are derived

from the scalar potentials ¢, (€) w(h) as follows:
¢(e) Z A(e) sinh
(l)y sin (knz)

5 = Z B' sinh
n=1
a? (h — y) sin (k)
(h) Z A(h) cosh

my cos (k knt)

Z B(h) cosh

ocff)(h — y) cos (l:nx) )

P =

where the superscripts (e), (h) are associated with £ (TM) and H
(TE) fields respectively, while the subscript ¢ = 1,2 designates the
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Fig. 1. Geometry of the discontinuity problem.

regions 1 (0 <y <d)and2 (d <y < h). Also fn = nr/L, o =
(B2 8% — e, k2)/%, ol = (B2 + 8% —k2)Y? and ko = w(eopo)'/?
denotes the free-space wavenumber.

The scalar potentials ¢( ) and d)( ) satisfy the two-dimensional
Helmholtz equation and the boundary conditions on the side walls of
the shielding box. In terms of these potential functions, the TE and
TM fields can be expressed easily as described in [13], [14].

The computation of the characteristics of the even hybrid modes
has been examined in [12], [14]. Following an analogous procedure,
the odd hybrid mode characteristics can be determined by computing
the nontrivial solutions of the same system as in [13], [14].

The mode propagation constants 3 and their associated mode
expansion coefficients ng), Zﬁf) are computed numerically by trun-
cating the infinite system into a finite order system, and this results
in a highly converging procedure. The existence of complex modes
is also taken into account [14], [15], [16].

Then the transversal field components e, (z,y) and h,, (x,y) can
be easily computed from (1) as

gm(x7y) - Vt . ¢,55) — L_’:%’_g X vtd’gh)
h,,(2,9) = “’;(y) x Vil + v, )

where i = 1(y < d) or 2 (d < y < h), and m denotes the mode
number.

Finally in the microstrip line the following mode power orthogo-
nality relation is satisfied:

[/ Em(‘rv y) X .h;:n'(xa y) <idx dy = 6mm’C"m (3)
A

where (*) denotes the complex conjugate, A is the cross-sectional area
of the microstrip, 8,,.,/ is the Kronecker delta, and the mode power
coefficients C,,, can be easily computed by an analogous procedure
as for the even hybrid modes [14].

1. MODE-MATCHING PROCEDURE

Consider an incident propagating wave (8 = (31) coming from
z = —oo towards the z = 0 discontinuity plane. Then inside
the = < O half-space the transversal electric and magnetic field
components can be expressed as a superposition of the incident
and the sum of all the even and odd reflected waves, while on the
z > 0 half-space the transversal fields have the same structure without
having the incident wave.

The trial of several approaches showed that there is an optimal
strategy in terms of the convergence behavior as follows:

Taking vector products of the boundary conditions with the com-
plex conjugate of the transversal field components and followmg the
orthogonality properties of the e{*, A{*), ¢/(*) and h{*) cigenwaves,
the following system of equations can be obtamed

(51,6 (O _ @)

+ 30 F (80,690 CY) - 1))

n=1

+ 3 B (66000 -y =0 @)

m=1
C9 1+ 30 FOC
n=1

+ Y FOCE®

m=1
=Y DIcl' @ +3 Dic ®
p=1 g=1
C:l(x)'(ﬁ) _ Z Fn(e)crflx)’(e)
n=1
_ Z FS)C:,(;)I(O)
m=1
= Zpée)c:zgz)’@)'
p=1
+3 DPcr ©
a=1
Z DI(JE)((gpr(g(e)(z)C;E) _ C;(yf«) (=) )
p=1

+ 3 DL (86 LY —

g=1

P @y=0

where (x) can be either (¢) or (o),

§@W 1 when (z) = (y)
0 when (z) # (y)

and F'9, F{?, D{” and D{*) are unknown expansion coefficients
to be determined.

C'9 and C5 are defined in (3) and C{ZI*2
integrals defined as follows:

h L—e¢
/ dy / d2 (0 x RSN @
0 —L

Finally (') has been used to denote the space z > 0.

The system of (4)—(7) constitutes the basis of the analytical
approach of this paper. The infinite summations are truncated into
a finite order taking N terms (modes). Then convergence of the
computed results is examined to verify the accuracy of the method.

The coupling integrals are computed by substituting the field
expressions and then performing analytically the integrations with
respect to x and y.

Then after computing the unknown coefficients F{2©) and
DS the reflection coefficient S11 = FL®) is obtained, while
according to the definition of the S parameters the transmission
coefficient So; is obtained as follows.

N 1/2
. C(e)
S21 = D! )<“'l_)) )

Finally the power preservation theorem

are coupling

oEVE

nln2

1511|2 + [521|2 = (10)

is used in order to check the accuracy of the results.
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TABLE I

€
CONVERGENCE SAMPLE OF THE PROPAGATION CONSTANT AND THE EXPANSION COEFFICIENT A&, )

1

3

4 s 6 7

8 -Jj0.842521 -30.842528 -.1‘0.842530 —=j0.842531 -30.842530 -30.842529 -j0.842529

mm~t

-33.055414 -33.055355 ~33.055329 -j3.055326 -J3.055332 - §3,055339 - §3.055344

-0.006108 =-0.006145 -0.006149
-0.003195 -0.003197

A_‘ <@

~0.006141 -0.006132 -0.006124

-0.003193 -0.003188 -0.003164

~0.001818 -0.001816 -0.001813 -0,001811
=-0.001029 =-0.001026 =0.001025

=0.000567 =~0.0003&66

~0.000301

.
f=10Hz, & =2.32, L =4,7625 mm, h = 6.35 mm, t = 0.47625 mm.

TABLE II
NUMERICAL RESULTS FOR THE MODE PROPAGATION CONSTANTS AT 10 GHz

D R
Fregusncy = 10 GHz

2t: = 1,905 mm

,»» =15 GHz

/. =10 GHz
'I rd

f=1 GHz

m B(mm~?) [evenl 8(mm-*) Loddl
0 0.2944+ 0.0 -

1 0.0~-30.2478 0.0~-30.6230
2 0.0~ 30,5540 0.0-10.7963
3 0.0~ 30.5935 0.0~30.8154
4 0,0~ J0. 9652 0,0-31.1697

2t. = 0.9525 mm

m B(mm~*) [aven] 8(mm™*) L[odd]
0 0.2883+ 0.0 -
1 0.0~-30.2483 0.0~ 30.6232
2 0.0-30.5545 0.0~ 30.7970
3 0.0~ 30. 5686 0.0~ 30.8132
4 0.0~ 30,9633 0.0-41.16%9

b

IV. NUMERICAL RESULTS

Numerical computations have been performed by applying the
theory presented above. For each pair of microstrip lines the spectrum
and the unknown modal expansion coefficients of both even and odd
propagating and evanescent waves are determined up to sufficient
order by taking 20 equations in the system used in [13]. Then
the system of (4)—(7) is solved numerically by keeping N terms
in the infinite summations. Extensive convergence tests have been
performed in order to verify the accuracy of the obtained scattering
parameters in conjunction to A and N truncations; a sample is

0.2 0.3 04 05 0.6 07 08 089

0.0 0.1
E(mm)

Fig. 2. Vanation of |S11]| with respect to the eccentricity.

presented in Table I. The numerical stability and the satisfaction of the
power conservation theorem were verified in each case. Furthermore
the convergence to the symmetric step discontinuity was verified in
the case where the eccentricity tends to zero [14].

In the computed results the shielding box dimensions are taken
to be

2L =9.53mm, h=6.35mm.

The substrate height is d = 0.635 mm and the dielectric constant
is €, = 2.32. The two microstrip line widths are

2t; = 0.9525mm, 25 = 1.905 mm.

In Table II the spectrum of both even and odd hybrid modes is
presented for the two microstrip lines at a frequency of 10 GHz. The
odd evanescent modes have exactly the same capacitive or inductive
behavior as the corresponding even ones (i.e. first odd compares to
first even, etc.). In Figs. 2 and 3 the variation of the Si; and S»;
parameters is presented with respect to the eccentricity € at 1 GHz,
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Fig. 3. Variation of /S1; with respect to the eccentricity.

10 GHz and 15 GHz. Notice that strong reflections are observed as
the eccentricity becomes comparable to the microstrip line widths.

V. CONCLUSIONS

A frequency-dependent analysis of the shielded microstrip asym-
metric step discontinuity has been presented. The asymmetric nature
of the discontinuity requires the investigation of the spectrum of both
odd and even hybrid modes. Numerical results have been presented
and the effect of the eccentricity on the scattering parameters has been
depicted. In principal the same method can be employed to treat other
types of asymmetric discontinuity problems.
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Semi-Discrete Finite Element Analysis of Zero-Thickness
Inductive Strips in a Rectangular Waveguide

Devin Crawford and Marat Davidovitz

Abstract—A semi-discrete finite element method is applied to determine
the network parameters for zero-thickness inductive discontinuities in a
rectangular guide. The solution obtained is computationally efficient and
is applicable under multi-mode conditions. Moreover, after obtaining the
solution for a given geometry at a specific frequency, further frequency
analysis for the same geometry requires only nominal additional recalcu-
lation. Convergence properties of the solution are studied and comparison
with published data is carried out to verify the solution accuracy.

I. INTRODUCTION

A variant of the FEM, the Semi-Discrete Finite Element Method
(SDFEM) utilizes the properties of the FEM in one plane of the
domain, while the solution along the remaining dimension is found
analytically. Thus, the computational burden associated with this
method is considerably smaller than that for a fully-discrete FEM
solution. Moreover, in the framework of the SDFEM, radiation
condition can be rigorously applied along certain directions in a
Cartesian coordinate system. Therefore, the SDFEM is suited to
probiems involving discontinuities in a plane. Here we examine
the problem of zero-thickness inductive discontinuities in a wave-
guide. This problem has been extensively studied in the past [1], [2],
[3], {41, [7], and therefore is a good model problem with which to
verify the proposed method, as well as examine its characteristics in
detail.

Section II of this paper deals with the theoretical formulation of
the problem, based on the scalar Helmholtz equation for the TE field.
In Section III the numerical issues of discretization, convergence and
execution time are examined. In section IV, we compare our resuits
with published data [7] and finally, Section V contains conclusions
and suggestions for further work.

II. FORMULATION OF THE PROBLEM

Consider a general, infinitesimally thin inductive diaphragm shown
in Fig. 1. It is assumed that the TE1o mode is incident from z < 0. It
is well-known [5] that for this type of discontinuity only higher-order
TE..o modes are excited. Therefore the scattered TE field satisfies the
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