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A Rigorous Analysis of a Shielded

Microstrip Asymmetric Step Discontinuity

C. N. Capsalis, N. K. Uzunoglu,

C. P. Chronopoulos, and Y. D. Sigourou

Abstract—In this paper microstrip asymmetric step discontinuities are

analyzed using a mode-matching technique leading to the frequency-

dependent characteristics of the structure. On both sides of the discon-
tinuity the fields are expanded in terms of the normal even and odd
hybrid modes of shielded microstrip lines, taking into account not only
the propagating modes but also higher order even and odd modes, which
are evanescent-type waves. The propagation constants of the even and odd
hybrid modes are computed using a previously developed method. Then

a mode-matching technique is appfied in order to obtain the reflection
and transmission coefficients of the dkcontinuity. Numerical results are

also given for several asymmetric step discontinuities.

I. INTRODUCTION

Modelling of discontinuities in microstrip lines is highly important

in analyzing the behavior of microwave and millimeter wave circuits.

A commonly encountered discontinuity structure in microstnp lines

is the asymmetric abrupt change in strip line width, which can be

employed in low pass filters, quarter-wavelength transformers and

generally in a wide range of microwave circuits. In that sense it is very

important to develop analytical techniques to treat this discontinuity

problem, especially in high frequencies (above 10 GHz) where the

lumped C and L description becomes less and less valid.

Microstrip discontinuity problems have been treated in the past by

several authors [1 ]–[8]. Several comprehensive reviews on this matter

are also presented in books [9]–[ 12]. The unshielded asymmetric

microstrip step discontinuity is studied in [2], where a magnetic-

wall model is employed. However, a full-wave analysis might be

required in order to describe efficiently the discontinuity behavior at

very high frequencies.

In this paper the concepts of the mode-matching techniques are

employed in order to formulate a full-wave analysis of the boundary

condition problem associated with the asymmetric microstnp step

discontinuity. The fields on both sides of the discontinuity interface
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are expanded in terms of both even and odd hybrid modes. The

characteristics of these modes are determined by using an analysis

similar to [13] by Mittra and Itoh, which determined the dispersion

characteristics of microstrip lines.

Then an efficient mode-matching procedure is developed by using

products involving the orthogonal functions of both microstrip lines.

The technique used in this paper is similar to that developed

previously by the authors [14] but now odd symmetry modes are

taken into account in order to treat the asymmetric step microstrip

discontinuities.

In the following analysis the time dependence of field quantities is

assumed to be exp(jwt ) and is suppressed throughout the analysis.

II. MODE CHARACTERISTICS OF THE MICROSTRIP

The geometry of the discontinuity problem under discussion is

shown in Fig. 1. The step discontinuity is located at the z = O

plane. The shielding box height and width are denoted by h and 2L,

respectively. Also the substrate dielectric constant and thickness are

denoted by c? and d respectively

The conductive strip widths in the z < 0 and z > 0 regions

are shown as 2tl and 2tz respectively, while e denotes the axial

dkplacement of the two microstrip lines on the z = O interface plane.

Of course, the displacement of the two shielding boxes leads to an

artificial geometry. However, it does not really affect the microstrip

discontinuity itself, taking into account that this displacement is

negligible compared to the shielding boxes’ dimensions. Furthermore,

a geometry where the shielding box is sufficiently wider than the

micro strip is almost equivalent to the open micro strip asymmetric

step discontinuity.

Because of the partial dielectric filling of the shielding box, only

hybrid modes can be guided. The basic approach employed in the

present analysis is the analytical technique developed by Mittra

and Itoh [13] to determine the properties of both propagating and

higher order evanescent modes. In [13] only even hybrid modes have

been taken into account, while the asymmetric nature of the step

discontinuity under study involves the properties of both odd and

even modes. In the present analysis, the same notation as in [13],

[14] is adopted.

In the odd mode case, the TM and TE field components are derived

from the scalar potentials +:’), ~fk) as follows:

.
(e)~inh&e) = ~ An

?2=1

cz~)gsin(kn.n)

where the superscripts (e), (h) are associated with E (TM) and H

(TE) fields respectively, while the subscript i = 1,2 designates the
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Fig. 1. Geometry of thedkcontinuity problem.

(1) –regions 1 (O < y < cZ)and2 (d< y < h). Alsokn =nn/L, a. —

(i:+~2-&)l/2,ai’) = (i:+(32-k:)’12 andk. = W(GP.)’12
denotes the free-space wavenumber.

‘h) satisfy the two-dimensionalThe scalar potentials ~~e) and+,

Helmholtz equation and the boundmy conditions on the side walls of

the shielding box. In terms of these potential functions, the TE and

TM fields can reexpressed easily asdescribedin [13], [14].

The computation of the characteristics of the even hybrid modes

has been exarninedin [12], [14]. Following an analogous procedure,

the odd hybrid mode characteristics can be determined by computing

the nontrivial solutions of the same system asin [13], [14].

The mode propagation constants /3 and their associated mode

‘(’) z(h) arecomputed numerically bytnm-expansion coefficients An , .

eating the infinite system into a finite order system, and this results
in a highly converging procedure. The existence of complex modes
is also taken into account [14], [15], [16].

Then thetransversal field components gn(z, y) and~~(r, y) can
be easily computed from (1) as

(2)

where i = 1 (g < d) or 2 (d < y < h), and m denotes the mode

number.

Finally in the microstrip line the following mode power orthogo-

nality relation is satisfied

where (*) denotes the complex conjugate, A is the cross-sectional area

of the microstrip, 6~ ~, is the Kronecker delta, and the mode power

coefficients Cm can be easily computed by an analogous procedure

as for the even hybrid modes [14].

III. MODE-MATCHING PROCEDURE

Consider an incident propagating wave (/3 = /31) coming from
z= –m towards the z = O dkcontinuity plane. Then inside
the z < 0 half-space the transversal electric and magnetic field
components can be expressed as a superposition of the incident
and the sum of all the even and odd reflected waves, while on the
z >0 half-space the transversal fields have the same structure without
having the incident wave.

The trial of several approaches showed that there is au optimal
strategy in terms of the convergence behavior as follows:

Taking vector products of the boundary conditions with the com-
plex conjugate of the transversal field components and following the
orthogonality properties of the S$), ~$), g$’) and h!’) eigenwaves,

the following system of equations can be obtained

.=1

~=1

co

?2:1

——~D$%$w +~ll$)c::)’(’)
p=l ,J=l

n=l

_ ~ ~(.)(J*(.)’(.)
m 9-???

m=]

(5)

(6)
q=l

p=l

.
+ ~ D$’y&.6@%$’)’_c:;)’(’)’)= (J (7)

*=1

where (x) can be either (e) or (o),

{

~(z)(,) _ 1 when (~) = (g)

– O when (x) # (y)

and F$), F~O), D$) and D$”) are unknown expansion coefficients

to be determined.
(Z1)(X2)

c(e) and C&) are defined in (3) and Cnlnz are coupling

integrals defined as follows:

Finally (‘) has been used to denote the space z >0.

The system of (4)–(7) constitutes the basis of the analytical

approach of this paper. The infinite summations are truncated into

a finite order taking N terms (modes). ‘Then convergence of the

computed results is examined to verify the accuracy of the method.

The coupling integrals are computed by substituting the field

expressions and then performing analytically the integrations with

respect to z and y.

Then after computing the unknown coefficients F$) ‘(0) and

D!) ‘(0), the reflection coefficient S11 = f’~e) is obtained, while

according to the definition of the S parameters the transmission

coefficient S21 is obtained as follows.

()C;e)’ 112
/.$21= D{e) —

/-$.)

Finally the power preservation theorem

1s,,12 + 1s2,12 = 1

(9)

(lo)

is used in order to check the accuracy of the results.
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TABLE I

CONVERGENCESAMPLE OF THE PROPAGATIONCONSTANTAND THE EXPANSION COEFFICIENT At)

M 1 2 3 4 5 4 7

$ -Joms42s21 -Jo.e42s2e -Jo. B42s30-.jo.e42s3l -Jo.042sm -jo.e42s29 -jo.e42s29
m-*

-j3.0SS414 -j3.0S53!5S -j3.05S329 -j3.09!5326 -j3.055332 -j3.05S339 -j3.CU!5344

+mO061~ -0.006145 +.006149 -0.0W141 +.006132 -0.006124

+.00319s -0.003197 +.003193 -o.omlm -0.003184

+.001818 +.001816 -0.001813 -0.001s11

-0.001029 -0.001026 -0.001025

4).000S67 -0.000W6

+.0m301

f = 1 GHz, ~. s 2.329 L = 4.7625 mm, h E 6.3S m, t = 0.47625 m.

TABLE II
NUMERICAL RESULTSFORTHE MODE PROPAGATIONCONSTANTSAT 10 GHz

f%-e~ncy = 10 G-lz

2ti = 1.90!5mn

m 8hnn”’ ) [even] s (m-’) [odd]

o 0.2944+jo. o
1 0.0- j0,2478 o.*jo.6230

2 o.o-jo. S!540 o.o-jo*79&3
3 o.o-jo. !593s o.o-jo. sls4

4 O.* jO.96!32 o.o-jl.1697

2t1. = 0.952s ffml

m B (mm-’) [even] B (mm-”’) Coddl

o o.zm3+jo. o
1 o.o-jo.2483 o.o-jo.6232
2 o,o-jo. ss4!5 0,0- jo. mo
3 O.o-jo. m o.o-jo.s132

4 o.+jo,9&!53 O.o-jl. I&w

IV. NUMERICAL RESULTS

Numerical computations have been performed by applying the

theory presented above. For each pair of microstrip lines the spectrum

and the unknown modal expansion coefficients of both even and odd

propagating and evanescent waves are determined up to sufficient

order by taking 2fW equations in the system used in [13]. Then

the system of (4)–(7) is solved numerically by keeping N terms

in the infinite summations. Extensive convergence tests have been

performed in order to verify the accuracy of the obtained scattering

parameters in conjunction to M and N truncations; a sample is

0.4:

f=l 5 GHz,,’
,,’

f=l O GHz

0,3:
,’”, “‘

,,, , f=l GHz
,/, / ~

E 0.2- .,-. / “
g

L-=-=-: ---------=“=-

E(mm)

Fig. 2. Vanatlon of lS11 \ with respect to the eccentncity.

presented in Table I. The numerical stability and the satisfaction of the

power conservation theorem were verified in each case. Furthermore

the convergence to the symmetric step discontinuity was verified in

the case where the eccentricity tends to zero [14].

In the computed results the shielding box dimensions are taken

to be

2L = 9,53mm, h = 6.35mm.

The substrate height is d = 0.635 mm and the dielectric constant

is e, = 2.32. The two microstrip line widths are

2t1 = 0.9525 mm, 2t2 = 1.905 mm,

In Table II the spectrum of both even and odd hybrid modes is

presented for the two microstrip lines at a frequency of 10 GHz. The

odd evanescent modes have exactly the same capacitive or inductive

behavior as the corresponding even ones (i.e. first odd compares to

first even, etc.). In Figs. 2 and 3 the variation of the S1~ and Szl

parameters is presented with respect to the eccentricity c at 1 GHz,
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.,
f=15 GHz

Fig. 3. Variation of &with respect to the eccentricity.

10 GHz and 1-5 GHz. Notice that strong reflections are observed as

the eccentricity becomes comparable tothemicrostnp line widths.

V. CONCLUSIONS

A frequency-dependent analysis of the shielded microstrip asym-

metric step discontinuity has been presented. The asymmetric nature

of the discontinuity requires the investigation of the spectrum of both

odd and even hybrid modes. Numerical results have been presented

and the effect of the eccentricity on the scattering parameters has been

depicted. In principal the same method can be employed to treat other

types of asymmetric discontinuity problems.
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Semi-Discrete Finite Element Analysis of Zero-Thickness

Inductive Strips in a Rectangular Waveguide

Devin Crawford and Marat Davidovitz

Abstract—A semi-discrete finite element method is applied to determine

the network parameters for zero-thickness inductive discontinuities in a
rectangular guide. The solution obtained is computationally efficient amd
is applicable under multi-mode conditions. Moreover, after obtaining the

solution for a given geometry at a specific frequency, further frequency

analysis for the same geometry requires only nominal addkional recalcu-
lation. Convergence properties of the solution are studied and comparison
with published data is carried out to verify the solution accuracy.

I. INTRODUCTION

A variant of the FEM, the Semi-Discrete Finite Element Method
(SDFEM) utilizes the properties of the FEM in one plane of the
domain, while the solution along the remaining dimension is found
analytically. Thus, the computational burden associated with this
method is considerably smaller than that for a fully-discrete FEM
solution. Moreover, in the framework of the SDFEM, radiation
condition can be rigorously applied along certain directions in a
Cartesian coordinate system. Therefore, the SDFEM is suited to
problems involving dkcontinuities in a plane. Here we examine
the problem of zero-thjckness inductive discontinuities in a wave-
guide. This problem has been extensively studied in the past [1], [2],
[3], [4], [7], and therefore is a good model problem with which to
verify the proposed method, as well as examine its characteristics in
detail.

Section II of this paper deals with the theoretical formulation of
the problem, based on the scalar Helmholtz equation for the TE field.
In Section III the numerical issues of dk.cretization, convergence rind
execution time are examined. In section IV, we compare our results
with published data [7] and finally, Section V contains conclusions
and suggestions for further work.

II. FORMULATION OF THE PROBLEM

Consider a general, infinitesimally thin inductive diaphragm shown

in Fig. 1. It is assumed that the TEIO mode is incident from z <0. k

is well-known [5] that for thk type of discontinuity only higher-order

TE~o modes are excited. Therefore the scattered TE field satisfies the
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